

C H A P T E R 1

INTRODUCTION

1.1 Background

Direct current (DC) motors have variable characteristics and are used extensively in

variable-speed drives. DC motor can provide a high starting torque and it is also

possible to obtain speed control over wide range. Why do we need a speed motor

controller? For example, if we have a DC motor in a robot, if we just apply a constant

power to each motor on a robot, then the poor robot will never be able to maintain a

steady speed. It will go slower over carpet, faster over smooth flooring, slower up hill,

faster downhill, etc. So, it is important to make a controller to control the speed of DC

motor in desired speed.

DC motor plays a significant role in modern industrial. These are several types of

applications where the load on the DC motor varies over a speed range. These

applications may demand high-speed control accuracy and good dynamic responses.

In home appliances, washers, dryers and compressors are good examples. In

automotive, fuel pump control, electronic steering control, engine control and electric

vehicle control are good examples of these. In aerospace, there are a number of

applications, like centrifuges, pumps, robotic arm controls, gyroscope controls and so

on.

1.2 Objective

The main core of this project is to design a speed control system of DC Motor by

using microcontroller. This system will be able to control the DC motor speed at

desired speed regardless the changes of load.

1.3 Organization of thesis

This thesis consists five chapters. In first chapter, it discuss about the objective and

scope of this project as long as summary of works. While

Chapter 2 will discuss more on theory and literature reviews that have been done. It

will discuss about how to measure speed of DC motor and speed controlling

technique that can be used to control the speed of the motor.

In Chapter 3, the discussion will be on Arduino platform and AVR microcontroller

Atmega2560.

In Chapter 4, the discussion will be on the methodology hardware and software

implementation of this project. The result and discussion will be presented in Chapter

5.

At the end of this thesis the conclusion of this project is discussed and future work

that can be done based on this work.

2

 C H A P T E R 2

THEORY

This chapter will discuss about theory portion. It will discuss about various speed

measurement techniques of DC motor and speed controlling technique that can be

used to control the speed of the motor.

2.1 Speed Measurement of DC Motor

To start with this project, we need a device that will measure the speed of the motor

shaft. There are several methods which can use to measure the speed of motor. Here,

we will only discuss about speed measurement by using tachometer and optical

encoder.

2.1.1 Speed Measurement of DC Motor using Tachometer

Tachometer is an instrument that measure speed motor based on concept of back EMF

induced in motor when it is running. The EMF is voltages appear on the commutator

segments caused by rotated in the magnetic field by some external force.

The magnitude of the EMF is given by [1],

EMF = KE φ N [2.1]

Where, K

E
= a constant based on motor construction

 φ = magnetic flux

 N = speed of motor (in rpm)

The actual relationship between motor speed and EMF follows and is derived from

Equation 2.1,

N= EMF/ KE φ [2.2]

Thus, the motor speed is directly proportional to the EMF voltage ad inversely

proportional to the field flux. For permanent magnet DC motor, when the EMF

measured is increases, the speed of the motor is also increases with the gain. So, the

speed of motor can be measured by measuring the back EMF using tachometer.

2.1.2 Speed Measurement of DC Motor using Optical Encoder

The best way to measure speed is to fit an optical encoder. This shines a beam of light

from a transmitter across a small space and detects it with a receiver the other end. If a

disc is placed in the space, which has slots cut into it, then the signal will only be

picked up when a slot is between the transmitter and receiver. As shown in below

figure a a disk with number of slot is placed between a photo transmitter like Infrared

LED and photo detector like photodiode or phototransistor.

3

Figure 2.1 Encoder Wheel

The output of photo detector is then given to squaring circuit. This will have an output

which swings to +5v when the light is blocked, and about 0.5 volts when light is

allowed to pass through the slots in the disc. The frequency of the output waveform is

given by,

 fout = (N * Rpm)/ 60 [2.3]

Where, f
out

= frequency of output waveform

 Rpm = speed in revolutions per minutes

 N = number of slots at disc

So, from Equation 2.3, the speed of DC motor in rpm is given by,

 Rpm = fout * 60 / N [2.4]

2.2 Speed Controlling of DC Motor

For precise speed control of servo system, closed-loop control is normally used.

Basically, the block diagram and the flow chart of the speed control are shown in

Figure 2.1 and Figure 2.1 respectively. The speed, which is sensed by analog sensing

devices (e.g., tachometer), is compared with the reference speed to generate the error

signal and to vary the armature voltage of the motor.

4

Figure 2.2 Basic block diagram for DC Motor speed control

Figure 2.3 Basic flow chart of DC motor speed control

There are several controllers that can used to control the speed of the motor such as by

using thyristor, phase-locked-loop control, chopper circuit, Fuzzy Logic Controller,

PWM technique and etc. Here Speed Control through PWM technique is discussed.

2.2.1 Speed Control of DC motor using PWM technique

Figure 2.4 simple motor circuit

Controller Motor

Driver
DC Motor

Speed Sensor

Actual Speed

5

Let us consider a simple circuit that connects a battery as power supply through a

switch MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) as shown in

Figure 2.3. When the switch is closed, the motor sees 12 Volts, and when it is open it

sees 0 Volts. If the switch is open for the same amount of time as it is closed, the

motor will see an average of 6 Volts, and will run more slowly accordingly.

This on-off switching is performed by power MOSFETs. A MOSFET (Metal-Oxide-

Semiconductor Field Effect Transistor) is a device that can turn very large currents on

and off under the control of a low signal level voltage.

The average of voltage that supply to DC motor is given by,

 Vave= (ton/T) * Vin [2.5]

Where, V
ave

= average voltage supply to DC motor

 t
on

= time ON of switches

T = period of PWM

(Ton/T) = DC, duty cycle

Figure 2.5 PWM signal and average voltage

6

As the amount of time that the voltage is on increases compared with the amount of

time that it is off, the average speed of the motor increases and vice versa.

The time that it takes a motor to speed up and slow down under switching conditions

is depends on the inertia of the rotor (basically how heavy it is), and how much

friction and load torque there is. Figure 2.5 shows the speed of a motor that is being

turned on and off fairly slowly:

Figure 2.6 Relation of supply voltage with motor speed

We can see that the average speed is around 150 rpm, although it varies quite a bit. If

the supply voltage is switched fast enough, it won’t have time to change speed much,

and the speed will be quite steady. This is the principle of switch mode speed control.

Thus the speed is set by PWM – Pulse Width Modulation.

A full bridge circuit is shown in the diagram below. Each side of the motor can be

connected either to battery positive, or to battery negative. Only one MOSFET on

each side of the motor must be turned on at any one time otherwise they will short out

the battery and burn out.

Figure 2.7

Full H-bridge

Motor drive

7

To make the motor go forwards, Q4 is turned on, and Q1 has the PWM signal applied

to it. Meanwhile, to make the motor go backwards, Q3 is turned on, and Q2 has the

PWM signal applied to it.

8

CHAPTER 3

ARDUINO PLATFORM

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-

use hardware and software. It's intended for artists, designers, hobbyists, and anyone

interested in creating interactive objects or environments.

Arduino can sense the environment by receiving input from a variety of sensors and

can affect its surroundings by controlling lights, motors, and other actuators. The

microcontroller on the board is programmed using the Arduino programming

language (based on Wiring) and the Arduino development environment (based

on Processing).

Figure 3.1 Arduino Mega 2560

In this project Arduino Board is used as controller, we have used Arduino Mega 2560,

which is shown in above figure. Arduino Mega contains 100 Pin Microcontroller

AVR Atmega 250. The IC pin diagram is shown in figure 4.10.

The summary of Board is given below:

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 14 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://wiring.org.co/
http://www.processing.org/

9

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB of which 8 KB used by boot loader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

The power supply to the Arduino Board is provided through USB port from

Computer. It is having easy coding with good libraries. It can also be load by using

various other developing environments like BASCOM Avr, AVR Studio, and Atmel

studio.

Other features like interrupts, serial communication pins, timer, SPI of board are

described below:

Serial:

Pin no: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16

(TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL

serial data. Pins 0 and 1 are also connected to the corresponding pins of

the ATmega16U2 USB-to-TTL Serial chip.

External Interrupts:

Pin no: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt

3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low

value, a rising or falling edge, or a change in value. To use interrupt

the attachInterrupt () function is used.

PWM:

Pin no: 0 to 13. Provide 8-bit PWM output with the analogWrite () function.

SPI:

Pin no: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication using the SPI library. The SPI pins are also broken out on the ICSP

header, which is physically compatible with the Uno, Duemilanove and Diecimila.

LED Indication:

Pin no: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off.

http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/SPI

10

USB Overcurrent Protection

The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB

ports from shorts and overcurrent. Although most computers provide their own

internal protection, the fuse provides an extra layer of protection. If more than 500

mA is applied to the USB port, the fuse will automatically break the connection until

the short or overload is removed.

Programming

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that

allows you to upload new code to it without the use of an external hardware

programmer. It communicates using the original STK500 protocol.

Arduino has vast libraries which can be complied on Arduino software or alpha

complier. Arduino is case sensitive language. These libraries make programming

language easy. Some common function are given below

pinMode (pin no, INPUT/OUTPUT) : This instruction sets pin of Microcontroller

as input in or output pin. The pin no is the number of the pin, which is indicated on

Arduino board. For example to set pin 31 as input pin one should write

“pinMode(31,INPUT) ”.

digitalWrite(Pin no, HIGH/LOW) : This instruction sets the defined pin as high or

low level.

analogWrite (Pin no , PWM): This instruction gives PWM at the decided pin the

value of PWM must be between 0 to 255.

Serial. Begin (baud rate): This instruction starts the serial communication circuitry.

According to the selected baud rate the timer 2 is settled for serial communication.

attachInterrupt (interrupt pin no, function, mode): This instruction enables the

hardware interrupt, interrupt pin no indicates the pin of at which interrupt must set

enable. Function indicates high to low transition or low to high transition , while

mode indicates the function in the program which should be executed while interrupt

occurred.

And many more instructions help to make programming easy. The program can easily

upload using USB from computer to board. The Arduino Board is having Atmega

8U2 Microcontroller which is having preloaded program of USB to Serial converter.

http://arduino.cc/en/Tutorial/Bootloader

11

CHAPTER 4

METHODOLOGY

4.1 Block Diagram of Optical Encoder speed controller

In this project, microcontroller will be used as the controller to control DC motor

speed at desired speed. The block diagram of the system is shown in Figure 4.1. It is a

closed-loop with real time control system.

Figure 4.1 Block diagram of DC motor speed control system

The actual speed of DC motor will be measured by encoder and feedback to

microcontroller. In microcontroller, it will calculate the error between the desired

speeds with the actual speed. The error will determine duty cycle of pulse-width-

modulation (PWM) in microcontroller. Then, the duty cycle will send to DC motor

driver either accelerate or decelerate DC motor to maintain it at desired speed.

In Our Project we used Arduino mega 2560 board which having on board program

facility. L293D is used as motor driver and 300 rpm, 12 V DC Motor is used. Encoder

is made of disk having slots on the periphery of it. Infrared Led is used as light source

and photodiode is used photo detector. The output of photo detector is given to the

squaring circuit. In Our project Schmitt trigger is used as squaring circuit using OP-

AMP 741 and positive feedback.

Figure 4.2 shows the picture of the project. The project is divides into two parts that

are software and hardware implementation. Each part of the project will discuss in the

following section.

Microcontroller/

Arduino

Motor

Driver
DC Motor

Encoder

Actual Speed

To PC

12

Figure 4.2 Picture of the project

4.2 Hardware implementation

This section will discuss about components that had been used included DC motor,

optical encoder, power supply 5V, Arduino microcontroller board, pulse-width-

modulation (PWM) and DC Motor drive.

4.2.1 Power Supply

Two different power supplies are used in this project.

1) 5V from PC through USB port to run Arduino Board.

2) 12V, which is converted from 230 V ac supply to run DC Motor.

The circuit diagram of AC to DC converter circuit from AC supply is shown below.

The circuit consists of 230-15 V, 500 mA transformer, with bridge rectifier circuit to

convert AC voltage in to DC. The output of rectifier is driven to the voltage regulator

circuit. Here two voltage regulator ICs are used 7805 and LM317. 7805 provides

constant 5 V at the output node, while LM317 provides variable output between 2.5 V

to 14 V.1000µF and 10µF capacitors are used for filtering purpose, which remove

high peaks from the output signal.

13

Figure 4.3 230V AC to 2.5 – 14 V DC Converter

Above circuit can able to produce voltage between 2.5 – 14 V. in our project the 12 V

dc motor is used ,therfore to run DC motor 12 V is used. Which is apllied to the

Motor Driver IC

4.2.2 DC Motor

Figure 4.4

12 V, 300 Rpm,

Geared DC Motor

In this project 12V DC Motor

is used as shown in figure.

It is having speed of 300 Rpm

with gears to control the speed.

The encoder plate will be

mounted on the shaft the motor

as shown in figure 4.2

14

4.2.3 Optical Encoder

This project, an optical encoder will be used to measure the DC motor speed. The

fundamental reason for the superiority of this system is that the optical encoder used

as the velocity sensor, is capable of much better performance than the generator type

of tachometer.

When the optical disc is properly mounted on the motor shaft, it generates a frequency

directly proportional to motor speed. Changes in gap, temperature, and magnet

strength simply have no effect on the output of the optical tachometer. By contrast, an

analog tachometer is directly affected by all the problems listed above.

The encoder in the market is very expensive. In order to reduce the cost of the project,

an optical encoder is built. Figure 4.5 show the basic configuration and the schematic

of the optical encoder in action respectively.

Figure 4.5 Schmeatic of Optical Encoder

The below, Figure 4.6 shows the circuit diagram of Sensors (Photodiode, Infrared

LED). The output of Photodiode is based on the input of infrared rays. During the

running when slot come across the infrared led and photodiode the infrared rays

incidents on photo diode which generate 4 V across resistance R2 as shown in figure.

When there is no short between diode and led the output will be 0.5V.

For better response the output is fed to the Schmitt trigger circuit, which is shown in

below figure 4.6. OP-AMP 741 is used with positive feedback to build Schmitt

trigger. The Schmitt trigger is generally used to generate square pulses and maintain

the output state. The operation of Schmitt trigger is such that when 0.5 v is applied to

the input of circuit the output will be low or logic state ‘0’, which is maintained low.

15

When the input reaches above the output state will be high, we can also consider it as

logic state ‘1’. The output is given to the next stage Arduino Board to count the pulses

generated by Schmitt trigger in finite time.

Figure 4.6 Sensor circuit of Optical Encoder and Schmitt trigger

4.2.4 Motor Driver IC

If a DC motor is connected directly to the voltage supply, the constant power will be

supplied to the DC motor all the time. Due to the constant power to motor, the speed

of motor will slow down when the load is heavier and speed up when the load is

lighter. So, DC motor drive is needed where we can control the magnitude of supply

voltage in order to control the speed of DC motor.

The DC motor drive that will be used in this project is a dual full bridge driver, chip

L293D. The Pin configuration of L293D is shown in Figure 4.7. The operating supply

voltage of chip L293D is up to 36V and the total DC current up to 2A.

The time to enable the chip L298 will be determined by the duty cycle pulse that sent

from PWM in microcontroller. The average of voltage that supply to DC motor is

given by below Equation,

16

 Vave= (ton/T) * Vin

The pin diagram of L293D is shown in below figure

 Figure 4.7 Pin Diagram of L293D

Figure 3.10 shows the schematic circuit of L293D with a 12V DC motor. To supply

the voltage to motor through L293D, it should be enabled by +5V at pin 1 (Enable 1)

or pin 9 (Enable 2). If the chip is disabled, V
ave

is zero, there is no voltage supply to

motor, and the motor will stop running. In this project, the duty cycle of PWM will

sent to V
en

to drive the motor. Therefore the PWM Pin of Arduino board is connected

to the pin 1 of L293D.

To run motor at 12V, 12V supply is given to the Vs, Vss Pin of the L293D. pin 4,5,13

and 12 should be grounded. Motor Driver provides facility to run DC motor in clock

wise and anticlockwise direction without interchanging the cables of DC motor.

According to the direction the pin 2, 7 and 15, 10 are settled. This pins are connected

with Arduino, which are simple digital pins that runs on digital logic levels ‘1’ and

‘0’. Two pins are used to control one motor; L293D is dual motor driver so it has 4

control pins. For any direction one pin of the two pins must be high, while other pin

must be low. This will change the direction of rotation. According to control pins

output pins 3 and 6 are adjusted automatically. These pins are connected with 12V

DC motor.

To stop the motor L293D has quick breaking facility. Both control pins 2 and 7

should be high for instant breaking.

17

Below Figure 4.8 shows L293D with 12V DC motor.

Figure 4.8 L293D with 12V DC motor

4.2.5 Arduino Board Interfacing

As shown in figure 4.9 Arduino Board is having 74 pins. We are using 1 hardware

interrupt, 1 timer interrupt, 1 PWM signal and 2 digital pins.

Function Arduino Pin No Microcontroller Pin no

Hardware Interrupt 2 PE4 (OC3B/INT4)

PWM Pin 7 PH4 (OC4B)

Digital pin 1 22 PA0 (AD0)

Digital pin 2 23 PA1 (AD1)

.

Table 4.1 Pin allocation of Arduino Board

18

Figure 4.9 Arduino Mega 2560 interfacing

As shown in above figure Arduino is connected to the PC and motor driver L293D.

5V supply is allocated to the board through USB port from PC. Here 5V supply

cannot be given from the power supply circuit of the project because the 12 V from

power supply is given to the DC motor, when DC motor is under the load the speed

decreases and it generates distortion in the supply that will be result in unwanted

interrupts in Arduino Board. Therefore a separate 5V must have to be provided to the

Arduino Board.

4.3 Software Implementation

For software implementation, Arduino Alpha compiler is used to program

microcontroller in C and C++ language. Besides, Visual Basic 10 is used for user

interface purpose and for monitoring the speed response of the system. This section

discuss about coding of Arduino Board and Visual basic 2010 and flowcharts of

programs.

4.3.1 Microcontroller Programming

In this project Arduino Mega 2560 board is used. It is having Atmega 2560

microcontroller of Atmel Corporation. Programming in project is done in c and c++

language by using Arduino libraries.

PWM

(Pin no 7) to

the Pin 1 of

L293d

(Output)

Hardware interrupt

from Schmitt trigger

(Input)
To the Pin no 2

and 7 of the

L293D

USB Power

supply from PC

and serial

communication

Port

19

4.3.1.1 Flowchart

The flowchart contains facility of two modes of project

1) Free running No-load Mode (Mode 1)

2) On-load Capturing Mode (Mode 2)

 Free running No-load Mode:

In this mode the whole platform of project will run on free running. The input

from Visual basic software can able to vary the speed of the motor. The

software sends PWM value according to the change in software. The Mode 1

can be activated by selecting button of No-load in software

.

20

Figure 4.10 Flowchart of main program having free running and on-load modes

 On –load Capturing Mode:

This mode compares the actual RPM of motor the Desired RPM of motor. If

actual speed is low than desired speed then the Arduino will automatically

increase the PWM and hence RPM will be increased. Same for when actual

speed is high than desired speed then the Arduino will automatically decrease

the PWM and hence RPM will be decreased. This mode can be selected by on-

load mode button in the software. The basic difference between this two

differences is that mode 1 will not check that actual speed of rpm is same as

desired speed or not.

21

Figure 4.11 Flowchart of hardware interrupts subroutine

Above flow chart is for hardware interrupt subroutine, when interrupt generated the

counter increase the count and return to the program.

Figure 4.12 Flowchart of timer interrupt subroutine

22

The flow chart for Timer interrupt subroutine is shown as above, the timer sets the

flag after each time loop. The program counter enters to the timer interrupt

subroutine. Var 2 and Var 3 are set to one for future use, while counter value is copied

to Actual rpm. Var 4 is used for backup of counter value.

4.3.1.2 Code

#include <TimerOne.h>

int maximumrpm[26]={0,0,11,42,74,103,128,148,164,177,

188,197,202,211,216,220,225,229,233,233,235,238,240,242,246,

255};

int minimumrpm[26]={0,0,0,11,43,75,104,129,149,165,178,

189,198,200,212,217,221,226,230,233,233,236,239,241,243,247};

int counter=0;

int counter1=0;

int counterflag=0;

int desiredrpm,actualrpm;

int desiredspeed,actualspeed=0;

int endflag=0;

int x[4]={0,0,0,0};

int a[4]={0,0,0,0};

int d,i,k,y;

int c=0;

int var5,var1=0;

int mindesiredrpm,maxdesiredrpm=0;

int endflag2=0;

int mode=1;

/* setup of input and output pins and interrupts */

void setup()

{

 pinMode(13,OUTPUT);

 pinMode(7,OUTPUT);

 pinMode(22,OUTPUT);

 pinMode(23,OUTPUT);

 pinMode(25,OUTPUT);

 digitalWrite(13,LOW);

 Serial.begin(9600);

 Timer1.initialize(240000);

 Timer1.attachInterrupt(alert);

 attachInterrupt(0,blockdetect,RISING);

 digitalWrite(13,HIGH);

}

23

/*main program starts here */

void loop()

{

 do

 {

 if(Serial.available())

 {

 Timer1.stop();

 d=Serial.read();

 if(d=='!')

 {

 mode=1;

 Timer1.initialize(2400000);

 Timer1.attachInterrupt(alert);

 digitalWrite(13,HIGH);

 }

 else if(d=='#')

 {

 mode=2;

 Timer1.initialize(2400000);

 Timer1.attachInterrupt(alert);

 digitalWrite(13,LOW);

 }

 else

 {

 i=d-48;

 k=0;

 do

 {

 if(Serial.available())

 {

 x[i]=Serial.read();

 if(x[i]=='%')

 {

 k=1;

 }

 a[i]=x[i]-48;

 i--;

 }

 }while(k==0);

 Timer1.initialize(2400000);

 Timer1.attachInterrupt(alert);

 y=d-48;

24

 switch(y)

 {

 case 1: c=a[y];

 break;

 case 2: c=a[y]*10+a[y-1];

 break;

 case 3: c=a[y]*100+a[y-1]*10+a[y-2];

 break;

 }

 digitalWrite(22,HIGH);

 digitalWrite(23,LOW);

 analogWrite(7,c);

 desiredspeed=c;

 var5=c;

 }

 }

 else

 {

 if(mode==2)

 {

 var1=var5/10;

 mindesiredrpm=minimumrpm[var1];

 maxdesiredrpm=maximumrpm[var1];

 if(actualrpm>=mindesiredrpm && actualrpm<=maxdesiredrpm)

 {

 endflag2=1;

 digitalWrite(52,HIGH);

 }

 else

 {

 digitalWrite(52,LOW);

 endflag2=0;

 if(actualrpm<mindesiredrpm)

 {

 if(actualspeed<=245)

 {

 actualspeed=actualspeed+10;

 analogWrite(7,actualspeed);

 }

 else

 {

 endflag2=1;

 }

 }

25

 else

 {

 if(actualspeed>=10)

 {

 actualspeed=actualspeed-10;

 analogWrite(7,actualspeed);

 }

 else

 {

 endflag2=1;

 }

 }

 counterflag=0;

 while(counterflag=0);

 counterflag=0;

 }

 }

 }

 }while(1);

}

// hardware interrupt subroutine for slot detecting

void blockdetect()

{

 counter++;

}

/* timer interrupt subroutine for counting value of pulse for

predefined time */

void alert()

{

 counter1=counter;

 actualrpm=counter1;

 Serial.print(counter1);

 Serial.print('\n');

 counterflag=1;

 counter=0;

 }

26

4.3.2 Visualbasic 2010 code

This section describes coding of software PWM Controller. To develop software

visual basic 2010 is used. The software has facility to send the PWM value at

particular COM Port. The COM Port can also be able to select.

In starting of program the software detects all available COM Ports and display on the

screen. User can select any COM Port, and baud rate from the list of baud rates. This

software has facility to make hardware run in two different modes. In this project two

modes are free-run mode and on-load condition.

Software has facility to display data which is sent by hardware to the computer. In this

project hardware (Arduino) sends slots cuts by encoder wheel in 2.4 seconds. From

that we can able to understand the mechanism of feedback to maintain the rpm of the

motor.

Code:

Imports System

Imports System.ComponentModel

Imports System.Threading

Imports System.IO.Ports

Public Class mainwindow

 Dim cj As String
 Dim comi As String
 Dim comj As String
 Dim myport As Array
 Dim f As String
 Dim N As String
 Dim D As String
 Dim z As Integer
 Dim fp1, fp2 As String
 Delegate Sub settextcallback(ByVal [text] As String)

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 aboutwindow.Close()
 freerunbtn.Enabled = False
 serialrefresh()

End Sub

Private Sub TrackBar1_Scroll(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TrackBar1.Scroll

 cj = TrackBar1.Value()
 TextBox1.Text = cj

27

 D = cj.Length()
 If SerialPort1.IsOpen = True Then
 SerialPort1.Write(D)
 f = 0
 z = 0
 SerialPort1.Write(cj)
 SerialPort1.Write("%")
 End If

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 End

End Sub

Private Sub connectbtn_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles connectbtn.Click

 connectbtn.Enabled = False
 SetTheSpeedToolStripMenuItem.Enabled = False
 disconnectbtn.Enabled = True
 refreshbtn.Enabled = False
 DisconnectToolStripMenuItem.Enabled = True
 modestatus.Text = "Free-runing Mode is activated"
 SerialPort1.PortName = newcomportlist.Text
 SerialPort1.BaudRate = baudratelist.Text
 SerialPort1.Parity = IO.Ports.Parity.None
 SerialPort1.StopBits = IO.Ports.StopBits.One
 SerialPort1.DataBits = 8
 SerialPort1.Open()
 serialstatus.Text = "Connected"
 cj = TrackBar1.Value()
 D = cj.Length()
 SerialPort1.Write(D)
 f = 0
 z = 0
 SerialPort1.Write(cj)
 SerialPort1.Write("%")

End Sub

Private Sub disconnectbtn_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles disconnectbtn.Click

 SerialPort1.Close()
 connectbtn.Enabled = True
 SetTheSpeedToolStripMenuItem.Enabled = True
 disconnectbtn.Enabled = False
 refreshbtn.Enabled = True

28

 DisconnectToolStripMenuItem.Enabled = False
 serialstatus.Text = "Disconnected!"
 modestatus.Text = " "

End Sub

Private Sub serialport1_datareceived(ByVal sender As Object, ByVal e As

System.IO.Ports.SerialDataReceivedEventArgs) Handles SerialPort1.DataReceived

 N = SerialPort1.ReadExisting()
 datareception(N)

End Sub

Private Sub COMPortToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles COMPortToolStripMenuItem.Click

 TextBox1.Select()
 TextBox1.SelectAll()

End Sub

Private Sub SetTheSpeedToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles SetTheSpeedToolStripMenuItem.Click

 connectbtn.Enabled = False
 SetTheSpeedToolStripMenuItem.Enabled = False
 disconnectbtn.Enabled = True
 DisconnectToolStripMenuItem.Enabled = True
 SerialPort1.PortName = newcomportlist.Text
 SerialPort1.BaudRate = baudratelist.Text
 SerialPort1.Parity = IO.Ports.Parity.None
 SerialPort1.StopBits = IO.Ports.StopBits.One
 SerialPort1.DataBits = 8
 SerialPort1.Open()
 serialstatus.Text = "Connected"
 cj = TrackBar1.Value()
 D = cj.Length()
 SerialPort1.Write(D)
 ' Do Until f = "$"
 ' Loop
 SerialPort1.Write(cj)
 SerialPort1.Write("%")
 refreshbtn.Enabled = False

End Sub

Private Sub DisconnectToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles DisconnectToolStripMenuItem.Click

 SerialPort1.Close()
 serialstatus.Text = "Disconnected!"
 BaudRateToolStripMenuItem.Enabled = True

29

 connectbtn.Enabled = True
 SetTheSpeedToolStripMenuItem.Enabled = True
 disconnectbtn.Enabled = False
 DisconnectToolStripMenuItem.Enabled = False
 refreshbtn.Enabled = True

End Sub

Private Sub ToolStripMenuItem2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ToolStripMenuItem2.Click

 If SerialPort1.IsOpen = False Then
 baudratelist.Text = 9600
 Else
 MessageBox.Show("Disconnect the hardware to
change Baudrate ")
 End If

End Sub

Private Sub ToolStripMenuItem3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ToolStripMenuItem3.Click

 If SerialPort1.IsOpen = False Then
 baudratelist.Text = 19200
 Else
 MessageBox.Show("Disconnect the hardware to change
Baudrate ")
 End If

End Sub

Private Sub ToolStripMenuItem4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ToolStripMenuItem4.Click

 If SerialPort1.IsOpen = False Then
 baudratelist.Text = 38400
 Else
 MessageBox.Show("Disconnect the hardware to change
Baudrate")
 End If

End Sub

Private Sub ToolStripMenuItem5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ToolStripMenuItem5.Click

 If SerialPort1.IsOpen = False Then
 baudratelist.Text = 57600
 Else
 MessageBox.Show("Disconnect the hardware to change
Baudrate")
 End If

30

End Sub

Private Sub ToolStripMenuItem6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ToolStripMenuItem6.Click

 If SerialPort1.IsOpen = False Then
 baudratelist.Text = 115200
 Else
 MessageBox.Show("Disconnect the hardware to change
Baudrate")
 End If

End Sub

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ExitToolStripMenuItem.Click

 SerialPort1.Close()
 End

End Sub

Private Sub AboutToolStripMenuItem_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles AboutToolStripMenuItem.Click

 aboutwindow.Show()

End Sub

Private Sub datareception(ByVal [text] As String)

 If Me.receiveddata.InvokeRequired Then
 Dim x As New settextcallback(AddressOf
datareception)
 Me.Invoke(x, New Object() {(text)})
 Else
 Me.receiveddata.Text &= [text]
 End If

End Sub

Private Sub received_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles receiveddata.TextChanged

 receiveddata.SelectionStart = receiveddata.TextLength
 receiveddata.ScrollToCaret()

End Sub

31

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles freerunbtn.Click

 If SerialPort1.IsOpen = True Then
 SerialPort1.Write("!")
 freerunbtn.Enabled = False
 onloadbtn.Enabled = True
 modestatus.Text = "Free-run mode is activated"

 End If

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles onloadbtn.Click

 If SerialPort1.IsOpen = True Then
 SerialPort1.Write("#")
 freerunbtn.Enabled = True
 onloadbtn.Enabled = False
 modestatus.Text = "On-load condition mode is activated"
 Else
 MessageBox.Show("Hardware is not found")
 End If

End Sub

Private Sub clrbtn_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles clrbtn.Click

 receiveddata.Clear()

End Sub

Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles refreshbtn.Click

 If SerialPort1.IsOpen = False Then
 newcomportlist.Items.Clear()
 baudratelist.Items.Clear()
 If SerialPort1.IsOpen = True Then
 serialrefresh()
 End If
 End If
End Sub

Private Sub serialrefresh()

 myport = IO.Ports.SerialPort.GetPortNames()

32

 For i = 0 To UBound(myport)
 For j = i + 1 To UBound(myport)
 comi = myport(i)
 comj = myport(j)
 If comj < comi Then
 myport(j) = comi
 myport(i) = comj
 End If
 Next
 Next
 For i = 0 To UBound(myport)
 newcomportlist.Items.Add(myport(i))
 Next
 baudratelist.Items.Add(9600)
 baudratelist.Items.Add(19200)
 baudratelist.Items.Add(38400)
 baudratelist.Items.Add(57600)
 baudratelist.Items.Add(115200)
 baudratelist.Text = baudratelist.Items.Item(0)
 newcomportlist.Text = newcomportlist.Items.Item(0)
 disconnectbtn.Enabled = False
 DisconnectToolStripMenuItem.Enabled = False
 TrackBar1.Value = "0"
 TextBox1.Text = TrackBar1.Value
 freerunbtn.Enabled = False
 onloadbtn.Enabled = True
 serialstatus.Text = "Disconnected!"

End Sub

Private Sub setbtn_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles setbtn.Click

 fp1 = TextBox1.Text

 If fp1 >= 0 And fp1 <= 255 Then
 If SerialPort1.IsOpen = True Then
 TrackBar1.Value = TextBox1.Text
 cj = TrackBar1.Value()
 D = cj.Length()
 SerialPort1.Write(D)
 SerialPort1.Write(cj)
 SerialPort1.Write("%")
 End If
 Else
 MessageBox.Show(" Value of PWM must be between 0
and 255")
 End If

End Sub

End Class

33

Figure 4.13 Screenshot of PWM Controller software build by using Visualbasic 2010

The screen shot of the developed software is shown in above figure having facility to

display received data, instant change in speed, and Speed variation by sliding track

bar. Two buttons free run and no-load condition are used for mode selection. Refresh

button is used to refresh the whole software by making speed equal to zero and re-

detect all COM Ports and update them on the display.

34

 CHAPTER 5

SIMULATION RESULTS

5.1 Introduction

This chapter will discuss about result of project. The result is considered on the basis

of the application of load on the DC motor. We will discuss results for No-Load

condition and On-load conditions.

The procedure for taking result for various inputs is described below:

 Start the PWMController software, which is made by using Visual basic 2010.

 Set proper baud rate and COM Port for Serial communication between PC and

Arduino Board.

 Set the proper speed of DC motor using PWMController software.

 Do not apply any load for No-Load conditions, while for On-Load condition

apply proper load.

 Read the pulses generated by Schmitt trigger circuit and calculate Rpm.

 Get the difference between desired Rpm and Actual Rpm.

5.2 Results on No-Load Condition

Here generated Pulses for Various Speed and Rpm is shown in below table:

The table represents the values of pulses generated for particular rang of PWM value.

This value is taken as reference to maintain constant speed. It is considered as

Desired RPM and for maintaining constant speed actual RPM is compared with

this desired RPMs.

Speed Range

(PWM)

Pulses generated

Min No of pulses

generated

Max No of pulses

generated

0-9 0 0

10-19 0 0

20-29 0 8

30-39 0 34

40-49 35 65

50-59 66 97

60-69 97 123

70-79 124 145

80-89 147 163

90-99 164 176

100-109 176 187

110-119 188 197

35

120-129 198 204

130-139 205 211

140-149 212 216

150-159 217 221

160-169 221 226

170-179 227 229

180-189 229 233

190-199 233 233

200-209 233 233

210-219 234 239

220-229 240 242

230-239 242 243

240-249 243 246

250-255 247 255

Table 5.1 Result of generated pulses for different PWM (Speed) value for no-load

condition

5.3 Results on On-load Condition

The section describes results of on-load condition. Here as shown in table the desried

speed is given as 105, for the free running condition the rpm is vary in range of 176 to

187. The actual rpm is 184.

Now if we applied the load the actual speed will be reduced to the 51, In on-load

condition mode the Arduino tries to catch the desired speed. As shown in figure the

RPM will increase from 51 to 183 continuously.

Input speed (PWM Value) 105

Desired RPM 176-187

Actual RPM on No-load condition (in

free running mode)

184

Actual RPM on load condition (in free

running mode)

51

In On-load Mode :

Variation in RPM to catch the Desired

RPM

When load is applied the rpm goes to the

51 then in on-load mode it increasing

continuously to reach to the 184.

64

87

104

119

135

145

152

162

170

177

36

178

177

186

186

180

182

182

183

In On-load Mode :

Variation in RPM to catch the Desired

RPM.

When load is removed from the motor the

rpm goes to the 51 then in on-load mode

it increasing continuously to reach to the

184 value.

220

233

233

224

220

214

209

202

193

183

183

183

182

Table 5.2 Result of Actual RPM on Applied-load condition for desired speed of 105

(PWM)

After reaching to the 184 RPM, if we remove the load then the actual rpm will

suddenly increase up to 233 and then it will reduce and maintain to the 182.

So, from the above reading we can conclude that by applying load or removing load

the feedback will try to maintain rpm at the desired RPM. Thus, we can get constant

RPM over variation of the load.

